
01010000 01001100
01000001 01011001

Samantha Breslin

This article explores the role of play in human interaction with computers in the
context of computer programming. The author considers many facets of program-
ming including the literary practice of coding, the abstract design of programs, and
more mundane activities such as testing, debugging, and hacking. She discusses
how these incorporate the aesthetics, creative imagination, and game play of pro-
grammers. She suggests that the seemingly intractable and unplayful elements
of computers, in fact, invite playful responses and actions by programmers and
that programmers use play to understand, engage with, and creatively imagine
and reconfigure the complexity of computer systems. She concludes that human-
machine relationships and computer programming constitute fruitful areas for
further play research. Key words: computer programming and poetry; debugging;
hacking; human and computer relations; play and computers; testing

[01001001:I]ntroduction

In several episodes of Star Trek: The Next Generation, the crew of the U.S.S.
Enterprise encounter the Borg. Members of this cybernetic species live together as
a hive mind and attempt to assimilate all others in the galaxy into the “perfection”
that is their collective. The Borg represent an ongoing academic and popular
discussion about the relationship between humans and cybernetic and comput-
ing machines that began around the 1940s (e.g. Bowker 1993; Downey 1998;
Haraway 1991; Hayles 1999, 2005; Turkle 2005). One facet of this discussion
entails the belief or fear that intelligent machines will replace the human species
as the dominant form of life on Earth or, in the case of the Borg, that cybernetic
machines will replace all biological life in the galaxy. This worry also appears in
other science-fiction works—in the Cybermen in the British series Doctor Who,
the Cylons in the television series Battlestar Galactica, and the Terminator in
the Terminator movies, to name but a few. The potential “extinction-level risks

357

American Journal of Play, volume 5, number 3 © The Strong
Contact Samantha Breslin at sdbreslin@mun.ca

358 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

to our species as a whole” by developments in fields like Artificial Intelligence
and biotechnologies has even been proposed as the focus of a multidisciplin-
ary research center at the University of Cambridge (Price, Rees, and Tallinn
2012). The relationship between humans and machines represents a struggle
for dominance and control (as the Borg state to all those they meet: “You will
be assimilated, resistance is futile”), though themes of human resistance against
the onslaught of emotionless and tireless machines also abound.

Embedded in these nightmares of machine domination and assimilation
rests some intriguing ideas about play. If we believe foundational play scholar
Johan Huizinga, play suffuses human life. We are Homo ludens in the sense that
human play “adorns life, amplifies it and is to that extent a necessity both for
the individual—as a life function—and for society by reason of the meaning it
contains” (Huizinga 1980, 9). On the other hand, most scholars see machines as
incapable of play, as lacking imagination and human emotion. The Borg embody
the threat we perceive in humans’ encounters with machines that individuality,
emotion, and play will be overtaken by the interface with technology. In the spirit
of Donna Haraway’s call to take “pleasure in the confusion of boundaries” among
humans and machines, I wish to complicate this ominous polarity between play-
ful humanity and calculating machines by exploring human relationships with
machines as we experience them today (Haraway 1991). I consider specifically
the role of play in the interaction between humans and computers as it relates
to computer programming.

We have seen growing interest among those in anthropology and other
social-science disciplines in the use of computers for play and gaming (Malaby
2009), and the growth appears especially in online virtual worlds such as World
of Warcraft (Bainbridge 2010; Boellstorff 2008; Corneliussen and Rettberg 2008;
Dibbell 2006; Nardi 2009) and other digital games such as online chess and
poker (Desjarlais 2011; Consalvo 2007; Schull 2005). As I show, however, it is not
merely the products of computer programming—the programs—that enable
forms of play. The process of producing programs itself also often operates
through forms of play. Some science and technology scholars mention in pass-
ing the playful aspects of programming (e.g. Turkle 2005; Downey 1998), and
computer scientists and other programmers often debate the role of aesthetics
and creativity in programming practices, both of which I discuss in this article.
I propose, however, computer programming as a potential area of investiga-
tion for play research on a variety of topics and issues such as the boundaries
between work and play, literary forms of play, the creation of imaginary worlds,

 01010000 01001100 01000001 01011001 359

gender and programming play, and virtual game play and risk. More generally,
the pervasiveness of play in computer programming also suggests that playful-
ness, as opposed to polarities centering on control and dominance, may provide
an alternative and useful way of approaching and exploring human-machine
relationships.

I begin with a brief introduction to computer programming and empha-
size the ways that the digital nature of computation, as well as the design and
structure of computing languages and environments, significantly restrict the
interactions between programmers and computers. I then outline my theoreti-
cal and methodological approach to understanding the relationship of humans
and computers. I consider several ways that computer programmers play with
computational restrictions and use computer code as an expressive and cre-
ative medium. I start with expressions and discussions of aesthetics related to
computer code and follow that with a consideration how the practice of coding
itself involves an imaginative process of abstraction. I consider how the daily
practices of programmers, such as hacking, testing, and debugging, intertwine
with competition, creative exploration, and game play. I argue that play and
creativity are key to the human-computer interface. Rather than struggling for
dominance and control over digital computers or feeling assimilated into their
computational logic, computer programmers use play to understand, engage
with, and imagine and reconfigure the complexity of computer systems. The
seemingly intractable and distinctly nonplayful mechanistic qualities of com-
puters in fact invite playful responses and actions.

[01000010:B]ackground Information

Computer programming is the practice of creating code, which consists of
sequences of instructions that operate computers. In other words, programming
is the practice of telling computers what to do. To provide these instructions,
programmers use a wide variety of computer languages. Many such languages are
considered “high-level,” meaning they can be read and understood by humans
with relative ease. Figure 1 shows a simple example of a program written in a
high-level language known as C. This program displays on the computer screen
“You will be assimilated.” This program is a variation of a very common program
known as “Hello World!” Most programmers use Hello World when first learn-
ing programming and code their computers to display the text “Hello World!”

360 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

For a program to execute (i.e. run) on a computer, it must be translated to
machine-readable code. Machine-readable code consists of a series of instruc-
tions in binary—consisting solely of 1s and 0s—which translate into particular
voltages transmitted across the computer hardware and are stored in various
formats and media. Figure 2, for example, presents the program from figure 1
expressed in machine code (displayed in hexadecimal—base 16—for the sake of
readability). The significance of this conversion is that all computer program-
ming is strictly regulated by the capabilities of the computer hardware that
applies these binary instructions. The hardware can calculate only a limited
set of instructions; these instructions must appear in particular formats; all
instructions written in nonbinary formats must be translated to a set of binary
instructions; and programs must be logically coherent to execute properly (Berry
2011). The title of this article “01010000 01001100 01000001 01011001,” which
translates to “PLAY” in American Standard Code for Information Interchange
(ASCII) characters, emphasizes this binary nature of computation. Every single
character, every instruction, and every idea written on a computer must be
translated to binary. There are no exceptions.

In addition to the limitations imposed by computer hardware, the lan-
guages and environments in which programmers choose to create code also
restrict their programming because these languages and environments come
with specific rules for instruction sets and formatting. Instruction in computer-
programming methods and a variety of social interactions among program-
mers also instill a variety of conventions regarding proper ways of writing and
structuring programs (Berry 2011). Human interaction with computers is thus
strictly regulated by computer hardware, software, and human social conven-
tions. Such constraints seem ominous for human play, suggesting that they

Figure 1. “You will be assimilated” program written in C

 01010000 01001100 01000001 01011001 361

Figure 2. Program from !gure 1 in hexadecimal

362 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

overpower any attempt at play within the lifelessness of machines. But I explore
throughout this article how various types of play are made possible by strictly
regulated relationships and how programmers may adopt, resist, and reconfigure
these restrictions.

[01010100:T]heoretical and Methodological Approach

To explore the different forms of play possible within this restricted relationship,
this article draws extensively on the introductions to coding as social practice by
Adrian Mackenzie (2005) and David M. Berry (2011) and on hacking and other
programming practices by Gabriella Coleman (2004, 2009) and her research
with Alex Golub (2008). These works explore many examples of coding as aes-
thetic and creative practice. I also consider discussions by computer scientists
about their own discipline and examine discussions on Internet forums, web
pages, and other online sources. In addition, I rely on my own experiences as an
undergraduate and co-op student in computer science. Given the broad subject,
I intend merely to introduce the many ways in which play intertwines with
computer programming. I suggest that coding constitutes an arena with many
possibilities for play research and offer an alternative to the image of humans
dominated by the actions and restrictions of machines.

An idea espoused by Bruno Latour underlies this article: although comput-
ers, software, and code are all human-made objects, these machines and technical
devices, in fact, act in the material and social world and interact with human
and nonhuman actors (Latour 1993, 1996). More specifically, such objects are
tied into a variety of social and material relationships and thereby are “not a
human thing, nor is it an inhuman thing. It offers, rather, a continuous passage,
a commerce, an interchange, between what humans inscribe in it and what it
prescribes to humans. A thing that possesses body and soul indissolubly. The
soul of machines constitutes the social element. The body of the social element
is constituted by machines” (Latour 1996, 213).

Along with the necessity of binary encoding of computing instructions,
computers also insist, for example, that programmers write programs in linear,
sequential logic (Eck 2011; Berry 2011). The binary base of digital computers
also requires that programmers parcel up the world into discrete pieces (Berry
2011). Through the interchange of these prescriptions by computers, code, and
software with their use and configuration by human programmers, technologies

 01010000 01001100 01000001 01011001 363

affect the social and material world. For example, they can reconfigure social
relations and insist on certain forms and types of interactions (Mackenzie 2005).

Code, I should emphasize, has a dual existence that significantly affects how
it acts in this world. Code can exist simultaneously as both text and execution,
distinguished by Berry as code and software, respectively (Berry 2011). These
existences denote one another and are deeply implicated in the constitution
of programmers versus users (which are not necessarily distinct). Latour dis-
cusses how all human-technology relations involve a redistribution of abilities
and responsibilities (Latour 1996). Yet, code and software taken together are
particularly exceptional in that they constitute a “highly involuted, historically
media-specific distribution of agency” (Mackenzie 2006, 19). As Berry sees it,
these involutions and the many relations that software has with other computers,
code, humans, and programs, have significantly affected how we experience the
world today (Berry 2011). It is this ability for code and software to act pervasively
and affect human social life that make dystopian visions of machines taking
over the world seem possible, not some distant and fantastical science fiction.
Instead, let me turn to a consideration of playful forms of interaction that occur
between programmers and computers.

[01000001:A]esthetics and code

Computer languages come in many shapes and forms. While they are func-
tionally written to be read and executed by computers, they are also languages
designed and used by humans. As Huizinga tells us of human language, every
expression and metaphor is a play on words in which humans construct a “sec-
ond, poetic world alongside the world of nature” (Huizinga 1980, 4). This section
explores how programmers use programming languages in creative, expressive,
and playful ways. They see beauty in the writing of code, they use it as a poetic
form of language, and they play with programming aesthetics, reconfiguring the
restrictions of computers in the way they express themselves through computer
languages. Programmers thereby insist on the human and machine expressive-
ness of computer languages.

When digital computers were first produced and developed throughout
the 1950s and 1960s, computer programmers emerged as the experts of these
new technologies. Programmers were seen as masters of a “black art,” “uniquely
creative” in their ability to develop programs and solve computing problems in

364 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

a manner distinct from what many considered the more rigorous and system-
atic approaches of science and engineering. Computing has since grown more
legitimate and professional, boasting academic computer science curricula and
programs and professional organizations (Ensmenger 2003). Nevertheless, com-
puter science continues to struggle academically and professionally in recogniz-
ing the artistic nature of computer programming (i.e. Knuth 1973).

Good coding “style”—a particular aesthetic for writing code—is often
taught to students as essential to producing clearly written code, code both
easy to read and easy to adapt into larger program structures. Yet, good coding
style also suggests a form of artistry (Knuth 1973; Black 2002). In his lecture for
the Turing Award, for example, David Knuth declares that “when we prepare
a program, it can be like poetry or music . . . programming can give us both
intellectual and emotional satisfaction, because it is a real achievement to master
complexity and to establish a system of consistent rules.” He goes on to claim that
programs can be “elegant,” “sparkling,” “noble,” and “truly magnificent” (Knuth
1974, 670). Significantly, for programmers and for my purposes, such statements
emphasize the similarities between computer languages and human languages
and so provide a medium for play on words for programmers. Free and open
source software (F/OSS) developers find this argument particularly significant.
Many of them even argue for code to be protected as a form of speech under
the First Amendment of the U.S. Constitution (Mackenzie 2005).

A haiku written by Seth Schoen exemplifies how programmers emphasize
and make use of the interconnections between these human and computing
languages (Mackenzie 2005, 30; Coleman 2009). A portion of this haiku appears
in figure 3. The arrest of Jon Lech Johansen, who had created and distributed a
software program known as DeCSS that many claimed violated copyright laws,
inspired Schoen to write his poetry. Within its 456 stanzas, it actually contained
the algorithm for the DeCSS program (Coleman 2009). An algorithm consists of
a series of instructions, like do a, followed by b, then c, then repeat. Programmers
often begin by writing algorithms in “pseudocode” prior to writing in actual
code. Pseudocode is not a particular programming language but substitutes as
an informal general form to describe the process of what programmers want to
achieve. Thus, programmers would appreciate the algorithm contained in the
haiku as a very creative and playful expression of pseudocode.

Court testamony following Johansens’s arrest explains that the haiku dem-
onstrates how “the path from idea to human language to source code to object
code is a continuum. As one moves from one to the other, the levels of precision

 01010000 01001100 01000001 01011001 365

and, arguably, abstraction increase. . . . But each form expresses the same idea,
albeit in different ways” (Mackenzie 2005, 30). The haiku critiques and mocks
laws that aim to make particular forms of code illegal while also demonstrating
the creativity of programmers. The code for the deCSS program also appeared
in other forms of artwork. It was, for example, printed on t-shirts in the image
of a DVD logo (Mackenzie 2005).

The haiku speaks directly to the topic of this article, expressing the technical
constraints of talking to machines, but also the metaphor, ambiguity, and poetry
of writing algorithms and code. As Coleman observes, “programmers conceive

Figure 3. Portion of haiku by Seth Schoen (Coleman 2009, 4431/N44)

366 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

of their craft as technically precise (thus functional) yet fundamentally expres-
sive” (Coleman 2009, 443). Thus, we find in computer languages the play that
Huizinga also sees in human language. Some might even argue that there are
more aspects of play in computer languages, because they are contained within
the “magic circle” of a computer, must adhere to a “system of consistent rules,”
and are distinct in many ways from “ordinary” or “real” life (Huizinga 1980,
8–11). These characteristics of play described by Huizinga are less obvious in
human languages, languages inherently part of our everyday life.

The particularities of the play with language possible through code appear
in poems that are valid code or programs themselves. These poems play directly
with the constraints of computer languages and address the implied dual audi-
ences of code: “programs can simultaneously mean something for the machine
and for human readers” (Mateas and Montfort 2005, 152). As a rule, code
poems must be parsable, meaning they must translate to a valid set of instruc-
tions in machine-code (Hopkins n.d.). Huizinga argues that poetry extends far
beyond the realm of aesthetics and involves competition, sociality, and ritual.
Yet, whether you produce poetry for the sake of beauty, status, or the “divine,”
he concludes that “to call poetry . . . a playing with words and language is no
metaphor: it is the precise and literal truth” (Huizinga 1980, 132). Code poems,
because of their dual audiences—they speak to both humans and machines—
involve a double play not often found in poems directed solely at humans. In
addition, some of these code poems also create productive output, offering a
third level of expression. An example of such a poem is seen in figure 4.

This poem takes advantage of several features of the Perl language in which
it is written, including its variety of key words and its lack of restrictions in the
use of tabs and new lines, which have specific meanings in some languages.
Hopkins (n.d.) argues that Perl suits the creation of code poems in particular
because of its inherent flexibility. Other languages, however, are more restrictive
in their structure and provide fewer meaningful key words for the poet to use.
Perl’s design is “practical (easy to use, efficient, complete) rather than beautiful
(tiny, elegant, minimal)” (Robert n.d.). In the design of Perl, we also see an
acknowledgement of classical coding aesthetics and style, which I have discussed.
In its flexibility, Perl surpasses these ideals, however, emphasizing practicality
but also offering programmers a wider range of expressive possibilities (Mateas
and Montfort 2005). Figure 5 illustrates this feature of Perl.

It is interesting to note, however, that many consider Perl poetry as “kitsch
art” (Mackenzie 2005, 27). I have also heard that because of its flexibility, Perl

 01010000 01001100 01000001 01011001 367

Figure 4. “Ode to My !esis” a Perl Poem written by Craig Counterman
(Hopkins n.d., "gure 3)

368 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

is not a “real” programming language when compared to more structured and
restrictive ones. While the poem in figure 4 produces output, it is not a practical
program in the sense that it does not do anything useful. Aside from creating
output through poetry, it is also not a technically difficult program and thus “less
interesting to [many] programmers” (Mateas and Montfort 2005, 148). Still, by
the very nature of introducing poetry and aesthetics to programming, program-
mers assert the expressiveness and playfulness of computer languages. Yet, by
contesting the usefulness of Perl poetry, programmers also insist on technicality
as an important measure of computer languages. They do not see the duality of
human and machine audiences as a constraint but as part of the expressiveness
of the language. A program should be creative, beautiful, and technical, but it
should also do something useful (ideally in a creative and beautiful way).

We also find this emphasis on technicality as part of creativity in the Inter-
national Obfuscated C Code Contest (IOCCC). The contest goal is to write the
most obscure/obfuscated C program according to the following rules: (1) “To
show the importance of programming style, in an ironic way”; (2) “To stress C
compilers with unusual code”; (3) “To illustrate some of the subtleties of the
C language”; and (4) “To provide a safe forum for poor C code. :-)” (Broukhis,
Cooper, and Noll 2012). Figure 6 provides an example of one winning entry
from 1998.

The contest illustrates the significance of technical proficiency in writ-
ing code, in playing with the restrictions imposed by particular languages and
computers in general by seeking to “stress” the compilers as well as playing with
conventional ideas of aesthetics. As Mateas and Montfort comment, “Such play
refutes the idea that the programmer’s task is automatic, value neutral, and
disconnected from the meaning of words in the world” in “classical” aesthetics

Figure 5. Output from “Ode to My !esis” (Hopkins n.d., "gure 4)

 01010000 01001100 01000001 01011001 369

as in much obfuscated code (Mateas and Montfort 2005, 147). As the DeCSS
haiku also espoused, programmers have restrictions, but they also have choice
in areas such as the program structure, the use of particular key words, and vari-
able names. The winning entry displayed in figure 6, for example, creatively uses
white space to suggest the function of the program, which takes in a number and
returns its square root (Berry 2011). Such contests have additional functions for
programmers. Through them programmers demonstrate their technical prowess
and compete with one another in technical ability and programming creativity.
They also demonstrate their knowledge of good code by deliberately creating
bad or obfuscated code. The contests also serve as performatives of program-
mers’ identities and a sharing of particular values of technical creativity (Case
and Piñeiro 2006).

Computer languages thus provide an expressive medium for program-
mers. Similar to human languages, they enable technical, poetic, competitive,
and aesthetic play with the words, syntax, grammar, and visual arrangement of
the language. The limitations of computing machinery, languages, and social
practices in these contexts are not seen as barriers to the capacity of program-
mers to express themselves; programmers are not assimilated within the linear
and binary nature of computation. Rather, the limitations are a basis for play
in themselves. Philosopher and programmer Ian Bogost has also played with
producing machine-written haikus in his video game A Slow Year, seeing it

Figure 6. Winning entry by Raymond Cheong from the 2001 IOCCC (Berry
2011,89)

370 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

as the bridge between “machine-as-poem (the games) and poetry as mean-
ing-machines (poetry in the ordinary sense)” (McCollough 2011). I discuss
“machine-as-poem” in the next section. Machine-generated haikus, however,
emphasize the machinal qualities of human language and human play.

For many, machine poetry could never be authentically playful. As lin-
guist and computer scientist Chrysanne DiMarco states, a computer “could fake
it, but poetry comes out of a person’s emotions, feelings, sensibilities, experi-
ences. A self-awareness. A machine might be able to generate a facsimile of
poetry, but it’s hollow” (Choudhuri 2011, 105). For DiMarco, poetry is thereby
a human form of expression. Nevertheless as Bogost’s machine poems suggest,
there is systematicity, regularity, rule, and constraint in human play and poetry,
and there is unpredictability and surprise in the operation (or expression) of
machines (McCullough 2011), an issue I also discuss in this article. Encounters
with computers and their languages thus invite us to consider the ways we are
similar and different from machines and play with the possibilities provided
by such encounters (see Turkle 2005). The restrictions of human-computer
interaction challenge and invite programmers to stress the limits of computing
languages, obfuscate classical aesthetics, or poeticize. Machine-generated poems
point to the playful possibilities that computers call out and enable. Case and
Piñeiro (2006) discuss how programmers instead more often felt constrained or
restricted in their abilities to create beautiful code by the limitations of deadlines
and coding practices for commercial output rather than by the limitations found
in the human-computer interface itself.

 [01000011:C]omputing Imagination

The use of high-level languages involves not only a means of expression but also
offers a source of abstraction, imagination, and creation. Huizinga’s idea of a
“second, poetic world” created through language finds concrete reflection in real-
ity with computing languages. In this section, I present high-level languages as
abstractions of machine operations. Ideally, when we create and run programs,
the translation between the abstract language and its concrete implementation
in machine language should be exact. Practically, however, because of the com-
plexity of the computer software controlling these programs and the translation
among various levels of abstraction, the computing itself contains significant
levels of indeterminacy (Berry 2011). Thus, instead of imagining the design of

 01010000 01001100 01000001 01011001 371

programming languages and environments as a one-to-one translation from
high-level code to machine code where the output precisely and exactly matches
the input, we should regard them as a form of creative imagination. When
programmers create a programming language, they rely on conceptual models
of how both computers and live reality operate. They also sometimes play with
these concepts, poking fun at the functional application of much computing and
emphasizing the expressive human facet of computer programming.

To explore how programming languages represent the abstract imagi-
nary worlds of computer operation, I use the example of Java (Mackenzie
2006). First created in 1995, Java Virtual Machine (JVM) and Java Program-
ming Language have become popular among programmers (Mackenzie 2006).
Java serves our purposes because the Java Virtual Machine introduces a layer
of abstraction between machine operation and computer languages that other
programming languages do not have. This layer exemplifies the creation of a
second poetic world through computing language. In Java, programming lan-
guage transforms into Java Byte Code, which consists of the machine code for
an imaginary machine implemented by the Java Virtual Machine (Mackenzie
2006). This imaginary machine language is then translated by the JVM to the
actual machine language of the computer on which it is running. Machine code
is platform dependent, meaning it is understandable only by specific types of
computers. Just as English speakers do not understand French, an Apple com-
puter does not understand PC machine-code. The creation of an abstract generic
machine—the Java Virtual Machine—allows programs to run on any computer
that has this software-based machine installed.

The Java Virtual Machine thus represents a creative solution to a concrete
problem and plays with the realities of machine hardware. By imagining how
they wish computers operated—independent of hardware—and expressing that
wish in code, programmers have literally created a new computing world where
the wish holds true. In other words, the Java Virtual Machine was produced as
an imaginary machine through a play with programming language to create a
second poetic world where all Java programs can run free of hardware speci-
ficities. As Mackenzie points out, the abstraction of the JVM is never quite as
complete as designers claim. Nevertheless, the act of coding and the software is
a creative and a “collective imagining” of the world of computing possibilities
(Mackenzie 2006).

The creation of new computing worlds through particular languages grows
more evident when we consider the Java Programming Language itself. Java is

372 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

what those in computing call an object-oriented programming language. It allows
a programmer to create a world of objects, each with particular properties and each
functioning according to specific pieces of code. Creating this world also involves
imagining the “actual” world as constituted by a discrete and bounded collection
of objects. A scheduling program for a college registrar’s office, for example, would
contain objects for student, classroom, course, and section. Of course, in terms
of machine code, the computer knows nothing of objects as concepts; it does not
know what a student or a classroom is. Object-oriented programming, as well as
programming in every other high-level computing language, is an abstraction of
the human world and of the computer world that renders each understandable
to the other. This process involves a play with language and a play with reality to
construct such mutually intelligible worlds.

Programmers build one level of abstraction upon another, beginning with
a virtual machine abstracted from any concrete computer hardware, on top of
which they lay a language-world of objects, through which they create a virtual
registrar’s office complete with students, classrooms, and courses. In relation to
the design and creation of technical projects, “the circumscribing, the coding,
and the visualization of the division of tasks allows a piling-up of Russian dolls
that increases the complication of the whole” (Latour 1996, 217). The multiple
play on reality and language “for programmers, computing in a dual sense, as
a technology and as an activity, becomes a total realm for the freedom of cre-
ation and expression” (Coleman 2004, 512). The Java Virtual Machine and Java
Programming Language are not so far removed from the creation of virtual
worlds such as Second Life and World of Warcraft (e.g. Boellstorff 2008; Malaby
2009; Bainbridge 2010). The former are simply lacking the graphical displays
and user interface of such virtual worlds. As Bogost explains in relation to his
game poetry, “When one writes software, one builds a machine for producing
a variety of results, rather than a single result fashioned and polished by hand.
The outcomes are unpredictable, surprising, and sometimes even broken. That’s
what it feels like to make a game, too” (McCullough 2011 n.p.).

I discuss further the significance of these indeterminacies in relation to pos-
sibilities for game play in the next section, but as Mackenzie comments, “Imag-
ining generates relations over time” (Mackenzie 2005, 138). The construction
of imaginary computing worlds is associated with the concomitant realization
of those computing worlds. As I mentioned, a play with reality underlies the
practice of computational design. In many ways, the realization of Huizinga’s
second (poetic) world through play with language becomes instantiated out-

 01010000 01001100 01000001 01011001 373

side the magic circle of the computer. This construction of reality both reflects
the vast magnitude of possibilities that computers seemingly offer to humans
(Coleman 2004) and how human life seems increasingly lived through and
in computing worlds (Berry 2011; Malaby 2009; Mackenzie 2005; Bainbridge
2010). The writing of code, the proliferation of software, and its application to
our daily lives from personal computers to cell phones, all create a world orga-
nized and mediated through digital computers as we delegate various forms
of agency to these machines (Latour 1996). In this context, a world dominated
by computers seems an impending reality. These imaginings and realizations
require acknowledging that language plays in the form of code and its execution
in software is a very serious form of play.

Returning to the magic circle of the computer, however, I touch on a final
example of “weird languages” to emphasize the creativity involved in processes of
imagination. Similar to the IOCCC, these languages parody “normal” computing
languages, play with ideas of both human and machine audiences, and often offer
programmers a challenging puzzle to decipher. There are a variety of examples:
INTERCAL consolidates the worst features of existing functional languages;
Brainfuck reduces the number of commands and space for computation to a
minimum, playing with the readability of computing languages; Chef insists that
all code look like a recipe, albeit one that creates inordinate amounts of food;
Shakespeare insists that all code look like a Shakespearean play; and Malbolge
seeks to make programming as difficult as possible (Mateas and Montfort 2005).

Let me briefly address this urge toward the difficult here. Like the IOCCC,
Malbolge presents a challenge to programmers and plays with the idea that
computing code must be functional or aesthetic in the “classical” sense. It also
emphasizes the comparative simplicity of machine code. While programmers
are capable of writing in binary machine code, although it is a tedious process,
Malbolge required programmers to use cryptographic deciphering and Arti-
ficial Intelligence search techniques to produce a workable program. On the
other hand, Malbolge is so difficult because it plays with programmers’ standard
assumptions about computers. For example, Malbolge machine code is based
in trinary (also referred to as ternary), meaning all instructions and data are
represented by 0, 1, or 2. Malbolge runs on a virtual machine similar to the
Java Virtual Machine, which mediates between this trinary language and binary
digital computer hardware. In terms of using the language, trinary makes it more
complicated for programmers to translate or understand numbers as they are
now represented in base 3. In addition, Malbolge also offers no debugger to help

374 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

determine the cause of malfunctioning code, includes minimal and unexpected
constructs for computation, and modifies the code itself as the program executes
(Mateas and Montfort 2005).

Designing and programming in Malbolge, therefore, represents a display
of technical ability but also emphasizes the relative lack of restrictions imposed
by standard computers and programming languages. Malbolge also contests
the notion that computers and programs must operate in a particular way,
such as through sequential logic, by creating a language through which the pro-
gram modifies itself. Thus, the world does not necessarily operate according to
digital logic, and humans are not necessarily assimilated within a digital universe.
Instead, humans have created the machines and a world that operates in this
way, so humans are in control. Note that here I have returned to the language
of control and resistance, insisting that humans will not be assimilated and
resistance is not futile. However, I want to emphasize an important difference
in my treatment of Malbolge; Malbolge shows how both the possibilities and
limitations of machines are invitations for play among willing programmers.
Binary computation, for some, may represent the monotony of encountering
machines. Rather than becoming assimilated with the emotionless machine,
however, Malbolge proposes a reconfigured relationship. It plays with the nature
of the human-computer encounter.

As with the creativity applied by programmers in writing computer code,
the limitations enforced by the computational environment do not have to be
considered restrictions; we can see them as rules, rules to be mocked, played
with, and sometimes broken. We adhere to particular forms of languages from
programming habit or from economic restrictions related to commercial soft-
ware production (Fishwick 2002). In contrast, the human-computer interface
seems a realm of possibilities where programmers can create new computational
worlds. Each of these worlds reflect a “double-coding” with reference to the
human reality in which they function and the machine reality that operates them
(Mateas and Montfort 2005). More specifically, these worlds are poetic plays on
both human and machine realities. The abstraction and imagining of computing
and human worlds also allows each to understand the other. Yet, even if human
play does not assimilate to the digital world of computation, code, software,
and computers act in this world. Thus, computers also capture and modify the
human world through the distributed agency of code (Mackenzie 2005). Many
forms of computational imaginaries should then be acknowledged as a serious
form of play with real-world effects.

 01010000 01001100 01000001 01011001 375

 [01000001:A] World of Play

Having discussed how computing languages offer programmers a means of
creative expression and their design offers them a means of creating imaginary
computing worlds, I now address the concrete practices of programmers—writ-
ing, debugging, and testing code—and consider how programmers interact with
the imaginary computing worlds they create. I also look at how the “numerous
layers of software [that] serve to create inner unstable universes within which
further abstraction takes place” provide a game-like environment for program-
mers (Berry 2011, 140) and let programming itself function as an extreme sport,
one entailing risky encounters, dangerous situations, and engaging and fun
explorations, as programmers compete with the computers, themselves, and
each other.

Two very common and interrelated practices occupy much of program-
mers’ work: testing and debugging. As an introductory Java programming text-
book explains, good programs should be “correct” and “robust”—they do what
they should do and they can handle “illegal” behavior or unexpected situations
(Eck 2011). Testing determines whether a program is correct and robust; debug-
ging fixes problems when a program fails a test. Errors come in the form of
improper syntax, more elusive problems of incorrect logic, unexpected behavior
of the underlying programming environment or the programming language,
or a simple mistake made by the programmer. Theoretically, a program can be
perfect; practically, most programs contain bugs. There is much indeterminacy
involved in the programming and use of code that become more and more
complex with each level of abstraction (Berry 2011).

Testing, in essence, attempts to break the program. Testing virtual game
design or computer chess may itself involve actually playing games. Yet even if
programmers are not testing a game, the indeterminacies contained within the
constructed order of computational space present them with a game-like envi-
ronment. In addition, while testing requires a systematic approach to ascertain
the overall correctness and robustness of the program, it also requires creativity
to think of unusual ways that something can go wrong. We can thus consider
the process of testing and debugging as a competition against—and a creative
exploration of—the computer. In discussing the game-like quality of the virtual
world Second Life, Malaby defines a game as “a semibounded and socially legiti-
mate domain of contrived contingency that generates unpredictable outcomes”
(Malaby 2009, 84). This aspect of contingency involves a mix of constraint and

376 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

possibility or, in other words, of controlled indeterminacy.
The difference between a computer bug and indeterminacy in a game lies

with its legitimacy: a computer bug is not supposed to be there. Bugs can also
have significant real-world consequences. There have been examples of failed
space missions, the loss of millions of dollars, injury, or even death due to errors
in software (Eck 2011). Both serious and mundane, the work of finding and
eliminating a bug nevertheless produces the game-like atmosphere described by
Malaby because, although the bug itself is not legitimate, testing and debugging
are legitimate encounters with indeterminacy. As I have mentioned, the con-
tained world of the computer and the inherent constraints and order imposed
by computer hardware satisfy many of the criteria of play and games set by
Huizinga. Ross Smith, director of test for Microsoft Corporation, also argues
that, in a work environment, the use of “productivity games” surrounding test-
ing—competitions among testers, for example—provides an arena for creativity,
risk taking, trust, and fun that supports involvement, productivity, and innova-
tion (American Journal of Play 2011).

We might also frame “hacking” as an exploration of—and competition
within—game-like computing worlds. Hacking has developed various meanings
over time. Gabriella Coleman and Alex Golub (2008) think of it as a multiplicity
of practices based on distinct ideals of liberalism and freedom. Yet, across all such
distinctions, hackers themselves seem to value tinkering and learning through
programming practice (Coleman and Golub 2008). For example, Mackenzie
observes that Linux creator Linus Torvalds and other programmers consider
Linux “above all a program by men for men who like to play with computing
hardware” (Mackenzie 2006, 89). Hackers use coding to play with the capabili-
ties of computer software and hardware. As Turkle claims, the exploration of
hacking involves seeing “complex computer systems as places where you can
let things get more and more complicated . . . playing with the issue of control
by living on the narrow line between having it and losing it” (Turkle 1988, 36).
In some senses, we might consider hacking a form of extreme sport or a per-
sonal contest against the hackers’ own bodies, against particular programs, and
against hardware systems. Hackers often challenge what they see as the more
institutionalized programming and programmers embodied in computer sci-
ence disciplines, administrative systems, research laboratories, and industry
(Turkle 2005).

Hacking resembles what Thomas Henricks calls “disorderly play” (Henricks
2009). Henricks points out that theories of play often involve orderly social,

 01010000 01001100 01000001 01011001 377

cultural, and psychological constructs but that play also creatively challenges
norms, organizations, and values. He suggests that “play features a dialogue—
a give-and-take of well-matched participants—and rebellion—the thwarting
of more powerful others—as well as attempts at control of and letting go of
restraints” (Henricks 2009, 29). Hacking plays with the rules of computers and
with the rules of legal systems and capitalist institutions, or, in a more mundane
context, with coding institutions. The hacker underground, for example, “envis-
ages hacking as a constant arms race between those with the knowledge and
power to erect barriers and those with the equal power, knowledge and especially
desire, to disarm them” (Coleman and Golub 2008, 263). More generally, hackers
tend to push their bodies to the limit, working for hours on end with no food
or sleep. Hacking involves game-like encounters with indeterminacy by raising
the issue of maintaining or losing control, by exploiting possible weaknesses in
software programs, and by grappling with the complexity of computing systems.
Thus, hacking presents the converse to the orderly play of software poetry and
the construction of computing worlds.

Mackenzie’s discussion of Linux also reveals the strongly gendered aspect
of hacking. Computer science as a discipline in Western countries, and hack-
ing in particular, is dominated by men (Turkle 1988; Adam 2003; Margolis and
Fisher 2002). According to Sherry Turkle, men see the in-depth exploration of
computing worlds as a safe form of play where they have control of the arena,
unlike the lack of control proffered by the complexity of human relationships
(Turkle 1988, 2005). Applying this to games, Malaby suggests that male gamers
tend to prefer the individual performances, for example, required by massive-
multiplayer-online games or first-person shooters, as opposed to women who
tend to prefer the social interaction found in games like online Scrabble (Malaby
2009). While this contrast may be overly simplistic, both in terms of gender divi-
sions and the social play involved in different types of games, the demonstration
of technical prowess in hacking, playing particular games or discussed in relation
to obfuscated code contests do appear to be performances of masculinity based
on the competitive exploration of computing worlds.

For hackers, this form of risky play and competition also serves as a strategy
for learning about computers, their limitations, and how those limits can be
transgressed (Turkle 1988). Returning to the practices of testing and debugging,
we can see them as a slightly more mundane form of hacking-like play with
the capabilities of computer software and hardware. As one computer scientist
complained in response to his attempts to introduce formal testing methods,

378 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

programmers thought that “debugging was fun! It turned out that they derived
the major part of their professional excitement from not quite understanding
what they were doing and from chasing the bugs that should not have been
introduced in the first place” (Dijkstra 1993, 3). Malaby points out that learn-
ing in itself functions like a game, as individuals encounter new ideas and cir-
cumstances that must be incorporated into their understanding of the world
and how they function in it (Malaby 2009). Henricks suggests that this is, more
generally, an important function of disorderly play as a means of encountering
and learning about the world, the way it operates, and the possibilities it holds
(Henricks 2009).

The interaction between humans and computers in testing, debugging,
and hacking can thus be characterized as a “risky encounter” (Berry 2011, 140).
Programmers compete against their own bodies, against computer hardware and
software, and against the elusiveness of the bug. Ultimately, however, humans
remain in control of this process, and in this sense the risky encounter “is safe
risk” (Turkle 1988, 37). While the potential for computers to dominate human
life is tangible given their ubiquity and pervasiveness, the play of testing, hacking,
and debugging introduces human creativity. If all else fails, one can simply pull
the plug and regain mastery over the life of the computer (Turkle 2005), although
fears of domination and control stem from the vision that one day pulling the
plug will not be possible. Nevertheless, as I mentioned earlier, programmers do
not see the limitations imposed by computer hardware and software on pro-
gramming as restrictions. Rather, the computing environment, in all its levels of
abstraction, offers hackers, debuggers, and testers a world of possibilities (and
indeterminacies) to explore and challenge. Hackers in particular demonstrate
“an absorption, a devotion that passes into rapture” in the computing world
(Huizinga 1980, 8). In attempting to break the computing rules (social, mate-
rial, technical), the hackers are the “cheaters” of the computing world who take
the game so seriously they need to break or remake the rules to win. In such an
approach, programming practice is not simply the systematic development of
useful software but a fun endeavor ripe with possibilities.

 [01000011:C]onclusions

I began this essay with the dystopian nightmare of the Borg. This cybernetic
species suggests the possibility that computers and machines might one day

 01010000 01001100 01000001 01011001 379

dominate and assimilate humanity into the seeming lifeless and homogenous
world of 1s and 0s. Resistance is futile. The human-computer interaction of
computer programming is certainly regulated by a variety of rules and restric-
tions. Digital computers understand only binary code, in particular formats
and orders. High-level computing languages also have their own rules about
structure, format, and keywords. In addition, social expectations insist on cer-
tain styles of programming. In concretely considering human interaction with
computers in the context of programming, however, I have complicated this
polarity and shown how human play is an integral part of our interface with
machines. It is in fact the many restrictions on computer programming that
make various forms of play possible.

I have briefly outlined three aspects of programming, pervaded by play, that
constitute fruitful areas for future play research. In particular, code serves as an
expressive medium programmers use to create beauty, poeticize, and obfuscate,
producing both human and computer meaning. In designing computer lan-
guages and environments, programmers engage in a form of collective imagining
that creates new “poetic” computing worlds. These imaginings have real-world
effects, but they also consist of a creative process full of possibilities. The rules
and restrictions imposed by computers, code, and software construct a “magic-
circle” of play for programmers (Huizinga 1980, 8). The worlds these program-
mers create can be literary, obscure, incomprehensible, or practical. In testing,
debugging, and hacking, programmers explore the worlds they have created
in a game-like environment. They track down bugs, compete and reconfigure
the possibilities of software and hardware, and sometimes even break the rules.

These many forms of play are a key component to the human-computer
interface. Processes of creativity and expression have allowed programmers
to imagine, create, and reconfigure the computer world and the real world in
astonishing ways. The process of abstraction involved also provides a key for pro-
grammers to understand the complexity of computer operations. Perhaps most
significantly, however, the strict world of computing, far from being dominated
or assimilated into a lifeless world of digital computation, enables and invites
programmers to play as part of the relationship with their computers. It is both
a human response to the restrictions of computation—an insistence that they
are not the mechanical thinking machines—and a summoning by computers
as a realm of possibilities for human creation and exploration. Thus, program-
mers write poetry, they create incomprehensible languages, and they break the
computing rules. Play thus suggests an alternative or reconfigured envisioning

380 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

of human-machine relationships, one full of possibilities for interaction and
engagement, rather than destruction and domination (Haraway 1991).

References

Association for Computing Machinery. n.d. “A.M. Turing Award.”
 http://amturing.acm.org/byyear.cfm.
Adam, Alison E. 2003. “Hacking into Hacking: Gender and the Hacker Phenomenon.”

ACM SIGCAS Computers and Society 33:3.
American Journal of Play. 2012. “How Play and Games Transform the Culture of Work:

An Interview with Ross Smith.” American Journal of Play 5:1–21.
Bainbridge, William Sims. 2010. The Warcraft Civilization: Social Science in a Virtual

World.
Berry, David M. 2011. The Philosophy of Software: Code and Mediation in the Digital Age.
Black, Maurice J. 2002. “The Art of Code.” PhD diss, University of Pennsylvania.
Boellstorff, Tom. 2008. Coming of Age in Second Life: An Anthropologist Explores the

Virtually Human.
Bowker, Geoffrey. 1993. “How to Be Universal: Some Cybernetic Strategies, 1943–1970.”

Social Studies of Science 23:107–27.
Broukhis, Leo, Simon Cooper, and Landon Curt Noll. 2012. “Goals of the Contest.” The

International Obfuscated C Code Contest. http://www.ioccc.org/.
Case, Peter, and Erik Piñeiro. 2006. “Aesthetics, Performativity and Resistance in the Nar-

ratives of a Computer Programming Community.” Human Relations 59:753–82.
Choudhuri, Aradhana. 2011. “Code as Poetry.” Arc Poetry Magazine. 66: 97–108.
Coleman, Gabriella. 2004. “The Political Agnosticism of Free and Open Source Software

and the Inadvertent Politics of Contrast.” Anthropological Quarterly 77:507–19.
———. 2009. “Code is Speech: Legal Tinkering, Expertise, and Protest among Free and

Open Source Software Developers.” Cultural Anthropology 24:420–54.
Coleman, Gabriella, and Alex Golub. 2008. “Hacker Practice: Moral Genres and Cultural
 Articulation of Liberalism.” Anthropological Theory 8:255–77.
Consalvo, Mia. 2007. Cheating: Gaining Advantage in Videogames.
Corneliussen, Hilde, and Jill Walker Rettberg, eds. 2008. Digital Culture, Play, and Iden-

tity: A World of Warcraft Reader.
Davis, Reade. 2000. “Gambling on the Future: Video Lottery Terminals and Social Change

in Rural Newfoundland.” Master’s Thesis, Memorial University of Newfoundland.
Desjarlais, Robert. 2011. Counterplay: An Anthropologist at the Chessboard.
Dibbell, Julian. 2006. Play Money: Or, How I Quit My Day Job and Made Millions Trading
 Virtual Loot.
Dijkstra, Edsger W. 1993. “On the Economy of Doing Mathematics.” Mathematics of

Program Construction: Lecture Notes in Computer Science 669:2–10.

 01010000 01001100 01000001 01011001 381

Downey, Gary Lee. 1998. The Machine in Me: An Anthropologist Sits among Computer
 Engineers.
Eck, David J. 2011. “Introduction to Programming Using Java.”
 http://math.hws.edu/eck/cs124/downloads/javanotes6-linked.pdf.
Ensmenger, Nathan L. 2003. “Letting the ‘Computer Boys’ Take Over: Technology and the
 Politics of Organizational Transformation.” International Review of Social History

48:153–80.
Fishwick, Paul A. 2002. “Aesthetic Programming: Crafting Personalized Software.” Leon-

ardo 35:383–90.
Haraway, Donna J. 1991. “A Cyborg Manifesto: Science, Technology, and Socialist-

Feminism in the Late Twentieth Century.” In Simians, Cyborgs, and Women: The
Reinvention of Nature, 149–82.

Hayles, N. Katherine. 1999. How We Became Posthuman: Virtual Bodies in Cybernetics,
Literature, and Informatics.

———. 2005. My Mother was a Computer: Digital Subjects and Literary Texts.
Helmreich, Stefan. 1998. Silicon Second Nature: Culturing Artificial Life in a Digital World.
Henricks, Thomas S. 2009. “Orderly and Disorderly Play: A Comparison.” American

Journal of Play 2:12–40.
Hopkins, Sharon. n.d. “Camels and Needles: Computer Poetry Meets the Perl Program-

ming Language.” http://budi.insan.co.id/courses/el2001/plpaper.pdf.
Huizinga, Johan. 1980. Homo Ludens: A Study of the Play-Element in Culture.
Knuth, Donald E. 1973. The Art of Computer Programming.
———. 1974. “Computer Programming as an Art.” Communications of the ACM 17:667–

73.
Latour, Bruno. 1993. We Have Never Been Modern. Translated by Catherine Por-

ter.
———. 1996. Aramis or the Love of Technology. Translated by Catherine Porter.
Leventhal, Laura Marie. 1988. “Experience of Programming Beauty: Some Patterns of
 Programming Aesthetics.” International Journal of Man-Machine Studies 28:525–50.
Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution.
Mackenzie, Adrian. 2006. Cutting Code: Software and Sociality.
Malaby, Thomas M. 2009. Making Virtual Worlds: Linden Lab and “Second Life.”
———. 2009. “Anthropology and Play: The Contours of Playful Experience.” New Liter-

ary History 40:205–18.
Margolis, Jane, and Allan Fisher. 2002. Unlocking the Clubhouse: Women in Computing.
Mateas, Michael, and Nick Montfort. 2005. “A Box, Darkly: Obfuscation, Weird Lan-

guages, and Code Aesthetics.” In Proceedings of the 6th Digital Arts and Culture
Conference, 144–53.

McCollough, Aaron. 2011. “4K Formalism: An Interview with Ian Bogost.” The Journal of
 Electronic Publishing 14. http://dx.doi.org/10.3998/3336451.0014.205.
Nardi, Bonnie A. 2010. My Life as a Night Elf Priest: An Anthropological Account of “World

of Warcraft.”
Price, Huw, Martin Rees and Jaan Tallinn. 2012. “The Cambridge Project for Existential

382 A M E R I C A N J O U R N A L O F P L A Y S P R I N G 2 0 1 3

Risk.” University of Cambridge. http://cser.org/.
Roberts, Kirrily “Skud”. n.d. “What is Perl?” perldoc.perl.org: Perl Programming Docu-

mentation. http://perldoc.perl.org/perlintro.html.
Schull, Natasha. 2005. “Digital Gambling: The Coincidence of Desire and Design.” The

Annals of the American Academy of Political and Social Science 597:65–81.
Turkle, Sherry. 1988. “Computational Reticence: Why Women Fear the Intimate

Machine.” In Technology and Women’s Voices: Keeping in Touch, edited by Cheris
Kramarae, 41–61.

———. 2005. The Second Self: Computers and the Human Spirit.

